Quantitative Analysis of Weak Antilocalization Effect of Topological Surface States in Topological Insulator BiSbTeSe 2

Quantitative analysis of the weak antilocalization (WAL) effect of topological surface states in topological insulators is of tremendous importance. The major obstacle to achieve accurate results is how to eliminate the contribution of the anisotropic magnetoconductance of bulk states when the Fermi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-04, Vol.19 (4), p.2450-2455
Hauptverfasser: Li, Hui, Wang, Huan-Wen, Li, Yang, Zhang, Huachen, Zhang, Shuai, Pan, Xing-Chen, Jia, Bin, Song, Fengqi, Wang, Jiannong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative analysis of the weak antilocalization (WAL) effect of topological surface states in topological insulators is of tremendous importance. The major obstacle to achieve accurate results is how to eliminate the contribution of the anisotropic magnetoconductance of bulk states when the Fermi level lies in bulk bands. Here, we demonstrate that we can analyze quantitatively and accurately the WAL effect of topological surface states in topological insulator, BiSbTeSe (BSTS), by measuring the anisotropic magnetoconductance. The anomalous conductance peaks induced by the WAL effect of topological surface states of BSTS together with the anisotropic magnetoconductance of bulk states have been observed. By subtracting the anisotropic magnetoconductance of bulk states, we are able to analyze the WAL effect of topological surface states using the Hikami-Larkin-Nagaoka expression. Our findings offer an alternative strategy for the quantitative exploration of the WAL effect of topological surface states in topological insulators.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.8b05186