Spin-Phonon Coupling and Magnetic Transition in an Organic Molecule Intercalated Cr 2 Ge 2 Te 6

The manipulation of spin-phonon coupling in both formations and explorations of magnetism in two-dimensional van der Waals ferromagnetic semiconductors facilitates unprecedented prospects for spintronic devices. The interlayer engineering with spin-phonon coupling promises controllable magnetism via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-07, Vol.24 (30), p.9169-9177
Hauptverfasser: Samanta, Sudeshna, Iturriaga, Hector, Mai, Thuc T, Biacchi, Adam J, Islam, Rajibul, Fullerton, John, Hight Walker, Angela R, Noufal, Mohamed, Siebenaller, Ryan, Rowe, Emmanuel, Phatak, Charudatta, Susner, Michael A, Xue, Fei, Singamaneni, Srinivasa R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The manipulation of spin-phonon coupling in both formations and explorations of magnetism in two-dimensional van der Waals ferromagnetic semiconductors facilitates unprecedented prospects for spintronic devices. The interlayer engineering with spin-phonon coupling promises controllable magnetism via organic cation intercalation. Here, spectroscopic evidence reveals the intercalation effect on the intrinsic magnetic and electronic transitions in quasi-two-dimensional Cr Ge Te using tetrabutyl ammonium (TBA ) as the intercalant. The temperature evolution of Raman modes, and , along with the magnetization measurements, unambiguously captures the enhancement of the ferromagnetic Curie temperature in the intercalated heterostructure. Moreover, the mode highlights the increased effect of spin-phonon interaction in magnetic-order-induced lattice distortion. Combined with the first-principle calculations, we observed a substantial number of electrons transferred from TBA to Cr through the interface. The interplay between spin-phonon coupling and magnetic ordering in van der Waals magnets appeals for further understanding of the manipulation of magnetism in layered heterostructures.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.4c00976