Bicyclic Topology Transforms Self-Assembled Nanostructures in Block Copolymer Thin Films

Ongoing efforts in materials science have resulted in linear block copolymer systems that generate nanostructures via the phase separation of immiscible blocks; however, such systems are limited with regard to their domain miniaturization and lack of orientation control. We overcome these limitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-09, Vol.20 (9), p.6520-6525
Hauptverfasser: Ree, Brian J, Satoh, Yusuke, Isono, Takuya, Satoh, Toshifumi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ongoing efforts in materials science have resulted in linear block copolymer systems that generate nanostructures via the phase separation of immiscible blocks; however, such systems are limited with regard to their domain miniaturization and lack of orientation control. We overcome these limitations through the bicyclic topological alteration of a block copolymer system. Grazing incidence X-ray scattering analysis of nanoscale polymer films revealed that bicyclic topologies achieve 51.3–72.8% reductions in domain spacing when compared against their linear analogue, which is more effective than the theoretical predictions for conventional cyclic topologies. Moreover, bicyclic topologies achieve unidirectional orientation and a morphological transformation between lamellar and cylindrical domains with high structural integrity. When the near-equivalent volume fraction between the blocks is considered, the formation of hexagonally packed cylindrical domains is particularly noteworthy. Bicyclic topological alteration is therefore a powerful strategy for developing advanced nanostructured materials for microelectronics, displays, and membranes.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c02268