3D Full-Color Image Projection Based on Reflective Metasurfaces under Incoherent Illumination

Metasurfaces provide an efficient approach to control light wavefronts and have emerged at the forefront of digital holography. Nevertheless, full-color image projection remains challenging. Using a combination of specular and diffuse reflections from a metasurface, in analogy to the normal mapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-06, Vol.20 (6), p.4481-4486
Hauptverfasser: Roth, Diane J, Jin, Mingke, Minovich, Alexander E, Liu, Song, Li, Guixin, Zayats, Anatoly V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metasurfaces provide an efficient approach to control light wavefronts and have emerged at the forefront of digital holography. Nevertheless, full-color image projection remains challenging. Using a combination of specular and diffuse reflections from a metasurface, in analogy to the normal mapping technique, we designed a reflective metasurface performing in the whole visible spectral range to demonstrate 2D images with shading effects of 3D objects. The noninterleaved metasurface is based on aluminum nanostructures with high and relatively uniform efficiency across the visible spectrum. It operates under incoherent illumination and does not require polarizing optics to observe images. The integration of the metasurface behind pre-existing transparent color images is also demonstrated for introduction of 3D effects. Emulating color 3D images with flat metasurfaces can be useful for security applications and decorative purposes. The design of broadband metasurface diffusers is also interesting for flat optical diffusing elements with engineered properties and display technology.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c01273