Silane Based Redox Initiating Systems: Toward a Safer Amine-Free, Peroxide-Free, and Metal-Free Approach

Room temperature redox initiated free radical polymerization (RFRP) has always attracted high attention in the field of materials due to its advantages of energy saving, high efficiency, and easy operation. However, the current redox initiating systems are based on toxic aromatic amines and hazardou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2019-05, Vol.52 (9), p.3351-3358
Hauptverfasser: Wang, Dengxia, Garra, Patxi, Szillat, Florian, Fouassier, Jean Pierre, Lalevée, Jacques
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Room temperature redox initiated free radical polymerization (RFRP) has always attracted high attention in the field of materials due to its advantages of energy saving, high efficiency, and easy operation. However, the current redox initiating systems are based on toxic aromatic amines and hazardous peroxides (e.g., dibenzoylperoxide). In the present paper, the redox two component (2K) initiating performances of silanes (as reducing agents) in combination with a highly stable iodonium salt (as oxidizing agent) were studied for the first time under mild conditions (RT, under air). Optical pyrometry measurements and DSC investigation results showed that the diphenylsilane (DPS) exhibited a unique initiating property for several (meth)­acrylate monomers. Remarkably, thermal postcuring (B-stage) is also possible using this system. Based on electron spin resonance (ESR) experiments, the initiating chemical mechanisms of RFRP are established. Importantly, the new proposed initiating systems can be used for the preparation of tack-free glass fibers and carbon fibers composites at room temperature.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.9b00233