Honeycomb-like Bicontinuous P‑Doped Porous Polymers from Hyper-Cross-Linking of Diblock Copolymers for Heterogeneous Catalysis

This work reports a triphenylphosphine-guided hyper-cross-linking self-assembly strategy to construct honeycomb-like bicontinuous P-doped porous polymers (HBPs) based on polylactide-b-polystyrene/4-diphenyl­phosphinostyrene (PLA-b-P­(S/DPPS)) diblock copolymers. The triphenylphosphine (PPh3) groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2017-12, Vol.50 (24), p.9626-9635
Hauptverfasser: Xu, Yang, Wang, Tianqi, He, Zidong, Zhou, Minghong, Yu, Wei, Shi, Buyin, Huang, Kun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work reports a triphenylphosphine-guided hyper-cross-linking self-assembly strategy to construct honeycomb-like bicontinuous P-doped porous polymers (HBPs) based on polylactide-b-polystyrene/4-diphenyl­phosphinostyrene (PLA-b-P­(S/DPPS)) diblock copolymers. The triphenylphosphine (PPh3) groups derived from DPPS not only play as the cross-linkable monomer with S and DPPS but also serve as the strong P ligands for binding the metal species. Subsequently, Pd nanoparticles (NPs) can be effectly encapsulated into the synthesized HBPs by a simple impregnation-reduction method. The resultant Pd@HBPs show more excellent catalytic performance for selective hydrogenations than the corresponding homogeneous catalysts and synthesized heterogeneous analogues. The great performance could be attributed to the advantage of the three-dimensionally (3D) honeycomb-like interconnected mesoporous structure, which allows the accessible catalytically active sites to be efficiently exposed toward reactants. This strategy represents a new method for the preparation of porous organic polymers with special morphologies and various functionalizations for potential applications including energy storage, adsorption, separation, and catalysis.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.7b02222