Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability
Conventional epoxy polymers are constructed by petro-based resources that are toxic and nonrenewable, and their permanent cross-links make them difficult to be reprocessed, reshaped, and recycled. In this study, a unique eugenol-derived epoxy (Eu-EP) is synthesized, and then vitrimeric materials are...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2017-11, Vol.50 (21), p.8588-8597 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conventional epoxy polymers are constructed by petro-based resources that are toxic and nonrenewable, and their permanent cross-links make them difficult to be reprocessed, reshaped, and recycled. In this study, a unique eugenol-derived epoxy (Eu-EP) is synthesized, and then vitrimeric materials are prepared by reacting Eu-EP with succinic anhydride (SA) at various ratios (1:0.5, 1:0.75, and 1:1) in the presence of zinc-containing catalysts. All vitrimers exhibit excellent shape changing, crack healing, and shape memory properties. Although vitrimers with 1:0.75 and 1:1 ratios cannot be physically reprocessed, they can be well reprocessed by the chemical method of being simply decomposed in a benign ethanol solution without loading additional catalyst. The collected decomposed polymers can form vitrimers again after exposure at 190 °C for 3 h. This work combines the concepts of vitrimer preparation, chemical recycling, and biobased polymer together, which would bring a feasible way to satisfy the demands of sustainability. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.7b01889 |