Synthesis and Isomeric Characterization of Well-Defined 8‑Shaped Polystyrene Using Anionic Polymerization, Silicon Chloride Linking Chemistry, and Metathesis Ring Closure
A methodology to efficiently synthesize well-defined, 8-shaped polystyrene using anionic polymerization, silicon chloride linking chemistry, and metathesis ring closure has been developed, and the 8-shaped architecture was ascertained using the fragmentation pattern of the corresponding Ag+ adduct,...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2017-08, Vol.50 (15), p.5779-5789 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A methodology to efficiently synthesize well-defined, 8-shaped polystyrene using anionic polymerization, silicon chloride linking chemistry, and metathesis ring closure has been developed, and the 8-shaped architecture was ascertained using the fragmentation pattern of the corresponding Ag+ adduct, acquired with tandem mass spectrometry. The 4-arm star precursor, 4-star-α-4-pentenylpolystyrene, was formed by linking α-4-pentenylpoly(styryl)lithium (PSLi) with 1,2-bis(methyldichlorosilyl)ethane and reacting the excess PSLi with 1,2-epoxybutane to facilitate purification. Ring closure of 4-star-α-4-pentenylpolystyrene was carried out in dichloromethane under mild conditions using a Grubbs metathesis catalyst, bis(tricyclohexylphosphine)benzylidine ruthenium(IV) chloride. Both the 4-arm star precursor and resulting 8-shaped polystyrene were characterized using SEC, NMR, and MALDI-ToF mass spectrometry (MS). Tandem mass spectrometry (MS2) was used for the first time to study the fragmentation pattern of 8-shaped polystyrene. The results confirmed the formation of the intra-silicon-linked, 8-shaped polystyrene isomer, but the observed spectra left open the possibility that the inter-silicon-linked, 8-shaped polystyrene isomer was also produced. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.7b01121 |