Non-Isocyanate Polyurethane Thermoplastic Elastomer: Amide-Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane
Non-isocyanate polyurethane (NIPU) was synthesized via cyclic carbonate aminolysis using poly(ethylene oxide) (PEO)- and poly(tetramethylene oxide) (PTMO)-based soft segments, divinylbenzene dicyclocarbonate as hard segment, and diamine–diamide (DDA) chain extender. Characterization of the resulti...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2017-06, Vol.50 (11), p.4425-4434 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-isocyanate polyurethane (NIPU) was synthesized via cyclic carbonate aminolysis using poly(ethylene oxide) (PEO)- and poly(tetramethylene oxide) (PTMO)-based soft segments, divinylbenzene dicyclocarbonate as hard segment, and diamine–diamide (DDA) chain extender. Characterization of the resulting segmented polyhydroxyurethanes (PHUs) reveals that the use of amide-based DDA chain extender leads to unprecedented improvements in nanophase separation and thermal and mechanical properties over segmented PHUs without DDA chain extender. With PEO-based soft segments, previously known to yield only phase-mixed PHUs, use of DDA chain extender yields nanophase-separated PHUs above a certain hard-segment content, as characterized by small-angle X-ray scattering. With PTMO-based soft segments, previously known to yield nanophase-separated PHUs with broad interphase, use of DDA chain extender produces nanophase-separated PHUs with sharp domain interphase, leading to wide, relatively temperature-independent rubbery plateau regions and much improved thermal properties with flow temperature as high as 200 °C. The PTMO-based PHUs with 19–34 wt % hard-segment content exhibit tunable mechanical properties with Young’s modulus ranging from 6.6 to 43.2 MPa and tensile strength from 2.4 to 6.7 MPa, with ∼300% elongation at break. Cyclic tensile testing shows that these PHUs exhibit elastomeric recovery with attributes very similar to conventional, isocyanate-based thermoplastic polyurethane elastomers. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.7b00765 |