Self-Accelerating Click Reaction for Cyclic Polymer
As the most straightforward synthetic strategy for cyclic polymers in theory, the traditional homodifunctional bimolecular ring-closure methods showed limited success for preparing pure cyclic polymers in practice even after several decades of development. A breakthrough was achieved in this paper t...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2017-02, Vol.50 (4), p.1463-1472 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the most straightforward synthetic strategy for cyclic polymers in theory, the traditional homodifunctional bimolecular ring-closure methods showed limited success for preparing pure cyclic polymers in practice even after several decades of development. A breakthrough was achieved in this paper to develop a successful homodifunctional bimolecular ring-closure method using a self-accelerating double strain-promoted azide–alkyne click reaction as the intermolecular and subsequent intramolecular coupling reactions. Because of the self-accelerating property of coupling reaction, this novel approach eliminated the usage of equimolar quantities between telechelic polymers and small molecule linkers, which was the prerequisite of traditional homodifunctional bimolecular ring-closure methods for pure cyclic polymers. More importantly, this approach could use an excess amount of small linkers to increase the intermolecular coupling reaction rate, further resulting in a significantly enhanced preparation efficiency of cyclic polymers. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.6b02614 |