Effect of Short Chain Branching on the Interlamellar Structure of Semicrystalline Polyethylene

We use molecular simulations with a united atom force field to examine the effect of short chain branching (SCB) on the noncrystalline, interlamellar structure typical of linear low density polyethylene (LLDPE). The model is predicated on a metastable thermodynamic equilibrium within the interlamell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2017-02, Vol.50 (3), p.1206-1214
Hauptverfasser: Kumar, Vaibhaw, Locker, C. Rebecca, in ’t Veld, Pieter J, Rutledge, Gregory C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use molecular simulations with a united atom force field to examine the effect of short chain branching (SCB) on the noncrystalline, interlamellar structure typical of linear low density polyethylene (LLDPE). The model is predicated on a metastable thermodynamic equilibrium within the interlamellar space of the crystal stack and accounts explicitly for the various chain topologies (loops, tails, and bridges) therein. We examine three branched systems containing methyl, ethyl, and butyl side branches and compare our results to high density polyethylene (HDPE), without branches. We also compare results for two united atom force fields, PYS and TraPPE-UA, within the context of these simulations. In contrast to conventional wisdom, our simulations indicate that the thicknesses of the interfacial regions in systems with SCB are smaller than those observed for a linear polyethylene without branches and that branches are uniformly distributed throughout the interlamellar region. We find a prevalence of gauche states along the backbone due to the presence of branches and an abrupt decrease in the orientational order in the region immediately adjacent to the crystallite.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.6b02458