Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion into Calcite Crystals

Dialkylphosphonate-functionalized and phosphonic acid-functionalized macromolecular chain transfer agents (macro-CTAs) are utilized for the reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) at 20% w/w solids in methanol at 64 °C. Spherica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2016-01, Vol.49 (1), p.192-204
Hauptverfasser: Hanisch, Andreas, Yang, Pengcheng, Kulak, Alexander N, Fielding, Lee A, Meldrum, Fiona C, Armes, Steven P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dialkylphosphonate-functionalized and phosphonic acid-functionalized macromolecular chain transfer agents (macro-CTAs) are utilized for the reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) at 20% w/w solids in methanol at 64 °C. Spherical, worm-like, and vesicular nano-objects could each be generated through systematic variation of the mean degree of polymerization of the core-forming PBzMA block when using relatively short macro-CTAs. Construction of detailed phase diagrams is essential for the reproducible targeting of pure copolymer morphologies, which were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). For nano-objects prepared using the phosphonic acid-based macro-CTA, transfer from methanol to water leads to the development of anionic surface charge as a result of ionization of the stabilizer chains, but this does not adversely affect the copolymer morphology. Given the well-known strong affinity of phosphonic acid for calcium ions, selected nano-objects were evaluated for their in situ occlusion within growing CaCO3 crystals. Scanning electron microscopy (SEM) studies provide compelling evidence for the occlusion of both worm-like and vesicular phosphonic acid-based nano-objects and hence the production of a series of interesting new organic–inorganic nanocomposites.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.5b02212