Spectroscopic Signature of Two Distinct H‑Aggregate Species in Poly(3-hexylthiophene)
In an endeavor to correlate the optoelectronic properties of π-conjugated polymers with their structural properties, we investigated the aggregation of P3HT in THF solution within a temperature range from 300 to 5 K. By detailed steady-state, site-selective, and time-resolved fluorescence spectrosco...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2015-03, Vol.48 (5), p.1543-1553 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an endeavor to correlate the optoelectronic properties of π-conjugated polymers with their structural properties, we investigated the aggregation of P3HT in THF solution within a temperature range from 300 to 5 K. By detailed steady-state, site-selective, and time-resolved fluorescence spectroscopy combined with Franck–Condon analyses, we show that below a certain transition temperature (265 K) aggregates are formed that prevail in different polymorphs. At 5 K, we can spectroscopically identify two H-type aggregates with planar polymer backbones yet different degree of order regarding their side chains. Upon heating, the H-character of the aggregates becomes gradually eroded, until just below the transition temperature the prevailing “aggregate” structure is that of still phase-separated, yet disordered main and side chains. These conclusions are derived by analyzing the vibrational structure of the spectra and from comparing the solution spectra with those obtained from thin films that were cooled slowly from the melting temperature to room temperature and that had been analyzed previously by various X-ray techniques. In addition, site selectively recorded fluorescence spectra show that there isdependent on temperatureenergy transfer from higher energy to lower energy aggregates. This suggests that they must form clusters with dimensions of the exciton diffusion length, i.e., several nanometers in diameter. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.5b00129 |