Impact of Ionene Architecture on Ion Mobility
We have investigated the nanostructure of five ionenes based on three different benzimidazolium- and imidizolium-based backbones as a function of hydration using atomistic molecular dynamics simulations supplemented with X-ray scattering. All five samples reveal sponge-like nanostructures with near-...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2024-11, Vol.57 (21), p.9923-9932 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the nanostructure of five ionenes based on three different benzimidazolium- and imidizolium-based backbones as a function of hydration using atomistic molecular dynamics simulations supplemented with X-ray scattering. All five samples reveal sponge-like nanostructures with near-complete percolation, even at low degrees of hydration, and no evidence of long-range phase separation. Analysis of the structure and ion dynamics shows that, while connectivity is highest among the samples functionalized with methyl alkylating units, the ionic pathways in the imidizolium-based backbones functionalized with butyl alkylating units are less tortuous, leading to faster ion diffusion at low water content. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.4c01217 |