Tailoring Crystalline Morphology via Entropy-Driven Miscibility: Toward Ultratough, Biodegradable, and Durable Polyhydroxybutyrate
The excessive use and disposal of plastic products have become a severe threat to the environment, animal welfare, and human health. Naturally synthesized, marine-degradable polyhydroxybutyrate (PHB) represents a viable green substitute for conventional plastics. However, the inherent brittleness of...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2022-07, Vol.55 (13), p.5527-5534 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The excessive use and disposal of plastic products have become a severe threat to the environment, animal welfare, and human health. Naturally synthesized, marine-degradable polyhydroxybutyrate (PHB) represents a viable green substitute for conventional plastics. However, the inherent brittleness of PHB remains a major challenge due to undesirable large spherulites and secondary crystallization. Herein, we report PHB-based (up to 70 wt %) ductile and flexible materials by facile physical blending with edible poly(vinyl acetate) (PVAc). Theoretical and experimental analyses show that entropy rather than enthalpy drives the high miscibility between two polymers. Entropic mixing turns fragile PHB spherulitic crystals (>70 μm) into myriads of ultrafine domains (500%), toughness (∼62 MJ m–3), flexibility, and shape recovery under repeated bending (180°) or twisting (360°). Under controlled composting conditions, the food-safe bioblends exhibit ∼2.4 times weight loss of virgin PHB. The proposed strategy proves applicable to other crystalline/amorphous polymeric mixtures. This discovery sheds new light on the rational design of green plastics for future sustainable electronics, agriculture, and biomedicine. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.2c00832 |