Nanospace-Mediated Self-Organization of Nanoparticles in Flexible Porous Polymer Templates

Self-organization is a fundamental process for the construction of complex hierarchically ordered nanostructures, which are widespread in biological systems. However, precise control of size, shape, and surface properties is required for self-organization of nanoparticles. Here, we demonstrate a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-09, Vol.33 (36), p.9137-9143
Hauptverfasser: Kuroda, Yoshiyuki, Muto, Itaru, Shimojima, Atsushi, Wada, Hiroaki, Kuroda, Kazuyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-organization is a fundamental process for the construction of complex hierarchically ordered nanostructures, which are widespread in biological systems. However, precise control of size, shape, and surface properties is required for self-organization of nanoparticles. Here, we demonstrate a novel self-organization phenomenon mediated by flexible nanospaces in templates. Inorganic nanoparticles (e.g., silica, zirconia, and titania) are deposited in porous polymer thin films with randomly distributed pores on the surface, leaving a partially filled nanospace in each pore. Heating at temperatures beyond the glass transition temperature of the template leads to self-organization of the inorganic nanoparticles into one-dimensional chainlike networks. The self-organization is mediated by the deformation and fusion of the residual nanospaces, and it can be rationally controlled by sequential heat treatments. These results show that a nanospace, defined by the nonexistence of matter, interacts indirectly with matter and can be used as a component of self-organization systems.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.7b02344