Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties

Biogenic synthesis of metal nanoparticles is of considerable interest, as it affords clean, biocompatible, nontoxic, and cost-effective fabrication. Driven by their ability to withstand variable extremes of environmental conditions, several microorganisms, notably bacteria and fungi, have been inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2015-10, Vol.31 (42), p.11605-11612
Hauptverfasser: Aziz, Nafe, Faraz, Mohd, Pandey, Rishikesh, Shakir, Mohd, Fatma, Tasneem, Varma, Ajit, Barman, Ishan, Prasad, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biogenic synthesis of metal nanoparticles is of considerable interest, as it affords clean, biocompatible, nontoxic, and cost-effective fabrication. Driven by their ability to withstand variable extremes of environmental conditions, several microorganisms, notably bacteria and fungi, have been investigated in the never-ending search for optimal nanomaterial production platforms. Here, we present a hitherto unexplored algal platform featuring Chlorella pyrenoidosa, which offers a high degree of consistency in morphology of synthesized silver nanoparticles. Using a suite of characterization methods, we reveal the intrinsic crystallinity of the algae-derived nanoparticles and the functional moieties associated with its surface stabilization. Significantly, we demonstrate the antibacterial and photocatalytic properties of these silver nanoparticles and discuss the potential mechanisms that drive these critical processes. The blend of photocatalytic and antibacterial properties coupled with their intrinsic biocompatibility and eco-friendliness make these nanoparticles particularly attractive for wastewater treatment.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.5b03081