Pyridinic-N Coordination Effect on the Adsorption and Activation of CO 2 by Single Vacancy Iron-Doped Graphene

Graphene doped with different transition metals has been recently proposed to adsorb CO and help reduce the greenhouse effect. Iron-doped graphene is one of the most promising candidates for this task, but there is still a lack of full understanding of the adsorption mechanism. In this work, we anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-04, Vol.40 (13), p.6703-6717
Hauptverfasser: Cabrera-Tinoco, Hugo, Borja-Castro, Luis, Valencia-Bedregal, Renato, Perez-Carreño, Adela, Lalupu-García, Aldo, Veliz-Quiñones, Ismael, Bustamante Dominguez, Angel Guillermo, Barnes, Crispin H W, De Los Santos Valladares, Luis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene doped with different transition metals has been recently proposed to adsorb CO and help reduce the greenhouse effect. Iron-doped graphene is one of the most promising candidates for this task, but there is still a lack of full understanding of the adsorption mechanism. In this work, we analyze the electronic structure, geometry, and charge redistribution during adsorption of CO molecules by single vacancy iron-doped graphene by DFT calculations using the general gradient approximation of Perdew, Burke, and Ernzernhof functional (PBE) and the van der Waals density functional (vdW). To understand the impact of the pyridinic-N coordination of the iron atom, we gradually replaced the neighboring carbon atoms by nitrogen atoms. The analysis indicates that chemisorption and physisorption occur when the molecule is adsorbed in the side-on and end-on orientation, respectively. Adsorption is stronger when pyridinic-N coordination increases, and the vdW functional describes the chemical interactions and adsorption energy differently in relation to PBE without significant structural changes. The development of the chemical interactions with the change of coordination in the system is further investigated in this work with crystal overlap Hamilton population (COHP) analysis.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.3c03327