Evaluation of Nanoparticle Stability under Blood Flow Shear
The stability of drug-loaded nanoparticles in vivo is related to the success of the drug delivery, which is investigated as a deficiency due to the limitation of traditional experimental methods. In this study, dissipative particle dynamics (DPD), a simulation method suitable for soft matter and flu...
Gespeichert in:
Veröffentlicht in: | Langmuir 2022-10, Vol.38 (41), p.12731-12738 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stability of drug-loaded nanoparticles in vivo is related to the success of the drug delivery, which is investigated as a deficiency due to the limitation of traditional experimental methods. In this study, dissipative particle dynamics (DPD), a simulation method suitable for soft matter and fluids, was used to study the stability of amphiphilic nanoparticles in the blood microenvironment. By comparing the morphology alteration of nanoparticles with various molecular topologies in the shear fluid field, we have found that branch degree and geometric symmetry would be the key factors in maintaining the nanoparticle’s stability. This research could provide more theoretical guidance for drug delivery system design. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02367 |