Probing Cerium 4 f States across the Volume Collapse Transition by X-ray Raman Scattering

Understanding the volume collapse phenomena in rare-earth materials remains an important challenge due to a lack of information on 4 electronic structures at different pressures. Here, we report the first high-pressure inelastic X-ray scattering measurement on elemental cerium (Ce) metal. By overcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-12, Vol.10 (24), p.7890-7897
Hauptverfasser: Chen, Bijuan, Pärschke, Ekaterina M, Chen, Wei-Chih, Scoggins, Brandon, Li, Bing, Balasubramanian, Mahalingam, Heald, Steve, Zhang, Jianbo, Deng, Hongshan, Sereika, Raimundas, Sorb, Yesudhas, Yin, Xia, Bi, Yan, Jin, Ke, Wu, Qiang, Chen, Cheng-Chien, Ding, Yang, Mao, Ho-Kwang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the volume collapse phenomena in rare-earth materials remains an important challenge due to a lack of information on 4 electronic structures at different pressures. Here, we report the first high-pressure inelastic X-ray scattering measurement on elemental cerium (Ce) metal. By overcoming the ultralow signal issue in the X-ray measurement at the Ce -edge, we observe the changes of unoccupied 4 states across the volume collapse transition around 0.8 GPa. To help resolve the longstanding debate on the Anderson-Kondo and Mott-Hubbard models, we further compare the experiments with extended multiplet calculations that treat both screening channels on equal footing. The results indicate that a modest change in the 4 -5 Kondo coupling can well describe the spectral redistribution across the volume collapse, whereas the hybridization between neighboring atoms in the Hubbard model appears to play a minor role. Our study helps to constrain the theoretical models and opens a promising new route for systematic investigation of volume collapse phenomena in rare-earth materials.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.9b02819