Nitrogen Configuration Effects on Charge Carrier Dynamics in CsPbBr 3 /Carbon Dots S-Scheme Heterojunction for Photocatalytic CO 2 Reduction
Nitrogen-doped carbon dots (NCDs) featuring primary pyrrolic N and pyridinic N dominated configurations were prepared using hydrothermal (H-NCDs) and microwave (M-NCDs) methods, respectively. These H-NCDs and M-NCDs were subsequently applied to decorate CsPbBr nanocrystals (CPB NCs) individually, us...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-05, Vol.15 (21), p.5728-5737 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitrogen-doped carbon dots (NCDs) featuring primary pyrrolic N and pyridinic N dominated configurations were prepared using hydrothermal (H-NCDs) and microwave (M-NCDs) methods, respectively. These H-NCDs and M-NCDs were subsequently applied to decorate CsPbBr
nanocrystals (CPB NCs) individually, using a ligand-assisted reprecipitation process. Both CPB/M-NCDs and CPB/H-NCDs nanoheterostructures (NHSs) exhibited S-scheme charge transfer behavior, which enhanced their performance in photocatalytic CO
reduction and selectivity of CO
-to-CH
conversion, compared to pristine CPB NCs. The presence of pyrrolic N configuration at the heterojunction of CPB/H-NCDs facilitated efficient S-scheme charge transfer, leading to a remarkable 43-fold increase in photoactivity. In contrast, CPB/M-NCDs showed only a modest 3-fold enhancement in photoactivity, which was attributed to electron trapping by pyridinic N at the heterojunction. The study offers crucial insights into charge carrier dynamics within perovskite/carbon NHSs at the molecular level to advance the understanding of solar fuel generation. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.4c01128 |