Plasmon Standing Waves by Oxidation of Si(553)–Au
Self-assembled Au atomic wires on stepped Si surfaces are metallic, as evidenced by one-dimensionally dispersing plasmonic excitation. Here, we investigate the effects of oxidation on metallicity along such Au atomic wires on a regularly stepped Si(553) surface by employing infrared absorption and h...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2019-04, Vol.123 (14), p.9400-9406 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-assembled Au atomic wires on stepped Si surfaces are metallic, as evidenced by one-dimensionally dispersing plasmonic excitation. Here, we investigate the effects of oxidation on metallicity along such Au atomic wires on a regularly stepped Si(553) surface by employing infrared absorption and high-resolution electron energy loss spectroscopies. Our results indicate that only the Si environment undergoes oxidation, which has a remarkably small effect on the plasmon dispersion. However, close to k ∥ → 0 the plasmon dispersion starts at increasingly higher energies as a function of oxygen exposure, which is attributed to standing wave formation on small sections of Au wires generated by the introduction of O atoms as scattering centers, not to electronic gap opening. This interpretation is in full agreement with the findings by infrared spectroscopy and low-energy electron diffraction. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.9b01372 |