First-Principles Insights into the Structural and Electronic Properties of Polytetrafluoroethylene in Its High-Pressure Phase (Form III)

Polytetrafluoroethylene (PTFE), commercially known as Teflon, is one the most effective insulating polymers for a wide range of applications because of its peculiar electronic, mechanical, and thermal properties. Several studies have attempted to elucidate the structural and electronic properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-03, Vol.123 (10), p.6250-6255
Hauptverfasser: Fatti, Giulio, Righi, M. Clelia, Dini, Daniele, Ciniero, Alessandra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polytetrafluoroethylene (PTFE), commercially known as Teflon, is one the most effective insulating polymers for a wide range of applications because of its peculiar electronic, mechanical, and thermal properties. Several studies have attempted to elucidate the structural and electronic properties of PTFE; however, some important aspects of its structural and electronic characteristics are still under debate. To shed light on these fundamental features, we have employed a first-principles approach to optimize the two coexisting PTFE structures (monoclinic and orthorhombic) at high pressure by using the characteristic zigzag planar chain configuration. Our electronic analysis of the optimized structures shows charge transfer from carbons to fluorines, supporting the PTFE electronegative character. In addition, band structure calculations show that the band gap is estimated to be around 5 eV, which correlates with previous studies. Moreover, the analysis of the valence and conduction states reveals an intrachain and an interchain character of the charge distribution, suggesting additional insights into the PTFE electronic properties.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.8b11631