Impact of Kinetically Restricted Structure on Thermal Conversion of Zinc Tetraphenylporphyrin Thin Films to the Triclinic and Monoclinic Phases

The powerful combination of p-polarized multiple-angle incidence resolution spectroscopy (pMAIRS) and grazing incidence X-ray diffraction (GIXD) is applied to the structural characterization of zinc tetraphenylporphyrin (ZnTPP) in vapor-deposited films as a function of the deposition rate. The depos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-03, Vol.122 (8), p.4540-4545
Hauptverfasser: Shioya, Nobutaka, Hada, Miyako, Shimoaka, Takafumi, Murdey, Richard, Eda, Kazuo, Hasegawa, Takeshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The powerful combination of p-polarized multiple-angle incidence resolution spectroscopy (pMAIRS) and grazing incidence X-ray diffraction (GIXD) is applied to the structural characterization of zinc tetraphenylporphyrin (ZnTPP) in vapor-deposited films as a function of the deposition rate. The deposition rate is revealed to have an impact on the initial film structure and its conversion by thermal annealing. The pMAIRS spectra reveal that a fast deposition rate yields a kinetically restricted amorphous film of ZnTPP having a “face-on orientation”, which is readily discriminated from another “randomly oriented” amorphous film generated at a slow deposition rate. In addition, the GIXD patterns reveal that the film grown at a slow deposition rate involves a minor component of triclinic crystallites. The different initial film structure significantly influences the thermal conversion of ZnTPP films. The randomly oriented amorphous aggregates with the triclinic crystallite seeds are converted to the thermodynamically stable phase (monoclinic) via the metastable triclinic phase. The kinetically restricted structure, on the other hand, is followed by a simple thermal conversion: the molecules are directly converted to the monoclinic one rather than the triclinic one.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.8b00972