Structure and Reactivity of a Model Oxide Supported Silver Nanocluster Catalyst Studied by Near Ambient Pressure X‑ray Photoelectron Spectroscopy

The photocatalytic activity of anatase TiO2 decorated with metal clusters has been widely documented, but the nature of the metal–metal oxide interface and reaction intermediates in catalytic processes are still not well understood. This in part is due to the fact that use of photoelectron spectrosc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-10, Vol.121 (39), p.21383-21389
Hauptverfasser: Wagstaffe, Michael, Hussain, Hadeel, Acres, Matthew J, Jones, Rosemary, Syres, Karen L, Thomas, Andrew G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photocatalytic activity of anatase TiO2 decorated with metal clusters has been widely documented, but the nature of the metal–metal oxide interface and reaction intermediates in catalytic processes are still not well understood. This in part is due to the fact that use of photoelectron spectroscopy to deduce the surface chemistry of catalytic systems has long been hampered by the huge pressure difference between real-world operation and the requirement of high vacuum for electron detection. Here, the in situ growth of silver nanoparticles on a model metal-oxide catalyst support and their reactivity with a CO/H2O gas mixture has been investigated in detail. Using synchrotron X-ray photoelectron spectroscopy, near-ambient pressure X-ray photoelectron spectroscopy, and scanning tunneling microscopy, the interaction of Ag with the anatase TiO2 surface leads to metal-surface charge transfer and low mobility of Ag on the surface. Upon exposure to a 1.5 mbar CO/1.5 mbar H2O gas mixture, partial oxidation of the Ag clusters is observed. There is also evidence suggesting that a Ag–carbonyl species is formed during exposure of the Ag/TiO2 surface to a CO/H2O gas mixture.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.7b05818