Long-Lived Hot Carriers in Formamidinium Lead Iodide Nanocrystals

The efficient harvesting of hot carrier energy in semiconductors is typically inhibited by their ultrafast thermalization process. Recently, highly promising experiments reported on the slowdown of the intraband relaxation in hybrid metal halide perovskites. In this work, we report on the presence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-06, Vol.121 (22), p.12434-12440
Hauptverfasser: Papagiorgis, Paris, Protesescu, Loredana, Kovalenko, Maksym V, Othonos, Andreas, Itskos, Grigorios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficient harvesting of hot carrier energy in semiconductors is typically inhibited by their ultrafast thermalization process. Recently, highly promising experiments reported on the slowdown of the intraband relaxation in hybrid metal halide perovskites. In this work, we report on the presence of long-lived hot carriers in weakly confined colloidal nanocrystals (NCs) of formamidinium lead iodide perovskite (FAPbI3). The effect is apparent from the excitation-dependent lengthening of the rise time and broadening of the high-energy tail of the transient absorption bleaching signal, yielding a retardation of the carrier relaxation by 2 orders of magnitude compared to typical time scales in colloidal semiconductor NCs. Three distinct cooling stages are observed, occurring at sub-picosecond, ∼5 ps, and ∼40 ps time scales, which we attribute to scattering from LO-phonons, contribution from a hot phonon bottleneck effect and Auger heating, respectively. Thermalization appears also influenced by the FAPbI3 NCs purity, with trapping at unreacted precursor impurities further reducing the carrier energy loss rate.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.7b02308