Spectral Anomaly in Raman Scattering from p‑Type Silicon Nanowires
An anomalous nature of Raman spectral asymmetry has been reported here from silicon nanowires (SiNWs) prepared from a heavily doped p-type Si wafer using a metal induced etching technique. Raman spectra of SiNWs prepared from two p-type Si wafers with different doping levels show different behaviors...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2017-03, Vol.121 (9), p.5372-5378 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An anomalous nature of Raman spectral asymmetry has been reported here from silicon nanowires (SiNWs) prepared from a heavily doped p-type Si wafer using a metal induced etching technique. Raman spectra of SiNWs prepared from two p-type Si wafers with different doping levels show different behaviors in terms of asymmetry as characterized by the asymmetry ratio. The SiNWs prepared from high doped p-type wafer show an anomaly in asymmetry in addition to the red shift and broadening of the Raman line shape due to the presence of the “FAno-quaNTUM” (FANTUM) effect. The heavy doping in the wafer provides a continuum of energy states to be available to interact with confined optic phonons which results in electron–phonon interaction. SiNWs prepared from low doped p-type wafer show a red shift and asymmetric broadening due to the quantum confinement effect alone. Careful analysis has been provided to clearly understand the role of Fano and quantum effects in p-type SiNWs with high doping and their relative contribution in Raman line-shape half-widths. A theoretical framework for supporting the presence of the FANTUM effect has also been proposed to show that how a system with appropriate Fano and quantum effects’ relative contribution may result in a near-symmetric Raman line shape. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.6b12811 |