Sequential Infiltration of Self-Assembled Block Copolymers: A Study by Atomic Force Microscopy

Sequential infiltration synthesis (SIS), when combined with novel polymeric materials capable of self-assembly, such as block copolymers (BCPs), has been shown to effectively improve the pattern transfer of nanoscale templates. Herein, we present a study of the SIS process aimed at elucidating some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-02, Vol.121 (5), p.3078-3086
Hauptverfasser: Lorenzoni, Matteo, Evangelio, Laura, Fernández-Regúlez, Marta, Nicolet, Célia, Navarro, Christophe, Pérez-Murano, Francesc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sequential infiltration synthesis (SIS), when combined with novel polymeric materials capable of self-assembly, such as block copolymers (BCPs), has been shown to effectively improve the pattern transfer of nanoscale templates. Herein, we present a study of the SIS process aimed at elucidating some critical aspects such as the evolution of the BCP morphology and mechanical properties after infiltration. Atomic force microscopy nanomechanical mapping was able to measure a consistent stiffness change within the SIS-infiltrated poly­(methyl methacrylate) (PMMA) blocks. Interestingly, the increase in Young’s modulus of the infiltrated blocks is small compared to the final stiffening of the same infiltrated features after a treatment with oxygen plasma.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.6b11233