Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p‑Type Character

We report a simple synthetic approach to grow uniform CH3NH3PbI3 perovskite (PSK) layers free of pinholes via varied portions of silver iodide (AgI) added to the precursor solution. XRD/EDS elemental mapping experiments demonstrated nearly uniform Ag distribution inside the perovskite film. When the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-02, Vol.121 (7), p.3673-3679
Hauptverfasser: Shahbazi, Saeed, Tsai, Cheng-Min, Narra, Sudhakar, Wang, Chi-Yung, Shiu, Hau-Shiang, Afshar, Shahrara, Taghavinia, Nima, Diau, Eric Wei-Guang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a simple synthetic approach to grow uniform CH3NH3PbI3 perovskite (PSK) layers free of pinholes via varied portions of silver iodide (AgI) added to the precursor solution. XRD/EDS elemental mapping experiments demonstrated nearly uniform Ag distribution inside the perovskite film. When the 1% AgI-assisted perovskite films were fabricated into a p-i-n planar device, the photovoltaic performance was enhanced by ∼30% (PCE increased from 9.5% to 12.0%) relative to the standard cell without added AgI. Measurement of electronic properties using a hall setup indicated that perovskite films show p-type character after Ag doping, whereas the film is n-type without Ag. Transients of photoluminescence of perovskite films with and without AgI additive deposited on glass, p-type (PEDOT:PSS), and n-type (TiO2) contact layers were recorded with a time-correlated single-photon counting (TCSPC) technique. The TCSPC results indicate that addition of AgI inside perovskite in contact with PEDOT:PSS accelerated the hole-extraction motion whereas that in contact with TiO2 led to a decelerated electron extraction, in agreement with the trend observed from the photovoltaic results. The silver cationic dopant inside the perovskite films had hence an effect of controlling the morphology to improve photovoltaic performance for devices with p-i-n configuration.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.6b09722