Simultaneous in Situ X‑ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials

Combined application of in situ X-ray diffraction (XRD) and differential scanning calorimetry (DSC) is a novel technique for rapidly evaluating the suitability of microporous materials for postcombustion CO2 capture. Further, while many microporous materials show promise for CO2 capture, most are no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-01, Vol.120 (1), p.360-369
Hauptverfasser: Woerner, William R, Plonka, Anna M, Chen, Xianyin, Banerjee, Debasis, Thallapally, Praveen K, Parise, John B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 1
container_start_page 360
container_title Journal of physical chemistry. C
container_volume 120
creator Woerner, William R
Plonka, Anna M
Chen, Xianyin
Banerjee, Debasis
Thallapally, Praveen K
Parise, John B
description Combined application of in situ X-ray diffraction (XRD) and differential scanning calorimetry (DSC) is a novel technique for rapidly evaluating the suitability of microporous materials for postcombustion CO2 capture. Further, while many microporous materials show promise for CO2 capture, most are not evaluated in the presence of water vapor, a major component of postcombustion flue gas. As a demonstration of the versatility of XRD-DSC techniques, representatives of the classes of materials typically proposed for CO2 capture, zeolites, and metal–organic frameworks (MOFs) were studied: zeolite NaX, Ni-MOF-74 [Ni2(dobdc); dobdc = 2,5-dihydroxy­terephthalate], ZIF-7 [ZIF: zeolitic imidazole framework, Zn­(phim)2; phim: benzimidazole], and SBMOF-1 [Ca­(sdb); sdb: 4,4′-sulfonyl­dibenzoate]. Although NaX and Ni-MOF-74 show very high affinity toward CO2 under idealized dry conditions, they are also very sensitive to the presence of water vapor and experience significant performance loss above 25% relative humidity (RH) at room temperature. Relative to NaX and Ni-MOF-74, ZIF-7 and SBMOF-1 show strong CO2 affinity even in the presence of 75% RH and may be more ideally suited for postcombustion flue gas CO2 capture than compounds with unsaturated metal sites. XRD-DSC is particularly powerful for evaluating the consequences of framework flexibility, with XRD providing the signature indicative of the structural rearrangement and the DSC providing the enthalpies of adsorption for each structure. This kind of detailed energy evaluation is not possible with other noncalorimetric methods.
doi_str_mv 10.1021/acs.jpcc.5b10159
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_5b10159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b368844162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-49005e6aa2cdc050e91f767e96d8bef8013c68d9c1fcf1beadbf18b2e9ce6e2a3</originalsourceid><addsrcrecordid>eNp1UM1OwzAMjhBIjMGdYx6AjqRdf3KcxhhImzhsSNwqN3WkTF1TJSnSTvAKvOKehOxH3JAs27L92Z8_Qu45G3EW80eQbrTppBylFWc8FRdkwEUSR_k4TS__8nF-TW6c2zCWJownA_K10tu-8dCi6R3VLV1p39OP_fePhR190kpZkF6blkJb0yk0xuoteqslXfm-1ugoBKNrY5rg6OwTmh480nkoT2pnbHdEh81LLa3pjD0cWoYRq6Fxt-RKhYB35zgk78-z9fQlWrzNX6eTRQQJz300FoExZgCxrCVLGQqu8ixHkdVFhaoIv8isqIXkSipeIdSV4kUVo5CYYQzJkLDT3sDBOYuq7MIjYHclZ-VBwDIIWB4ELM8CBsjDCXLsmN62geD_4798jHjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simultaneous in Situ X‑ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials</title><source>American Chemical Society Journals</source><creator>Woerner, William R ; Plonka, Anna M ; Chen, Xianyin ; Banerjee, Debasis ; Thallapally, Praveen K ; Parise, John B</creator><creatorcontrib>Woerner, William R ; Plonka, Anna M ; Chen, Xianyin ; Banerjee, Debasis ; Thallapally, Praveen K ; Parise, John B</creatorcontrib><description>Combined application of in situ X-ray diffraction (XRD) and differential scanning calorimetry (DSC) is a novel technique for rapidly evaluating the suitability of microporous materials for postcombustion CO2 capture. Further, while many microporous materials show promise for CO2 capture, most are not evaluated in the presence of water vapor, a major component of postcombustion flue gas. As a demonstration of the versatility of XRD-DSC techniques, representatives of the classes of materials typically proposed for CO2 capture, zeolites, and metal–organic frameworks (MOFs) were studied: zeolite NaX, Ni-MOF-74 [Ni2(dobdc); dobdc = 2,5-dihydroxy­terephthalate], ZIF-7 [ZIF: zeolitic imidazole framework, Zn­(phim)2; phim: benzimidazole], and SBMOF-1 [Ca­(sdb); sdb: 4,4′-sulfonyl­dibenzoate]. Although NaX and Ni-MOF-74 show very high affinity toward CO2 under idealized dry conditions, they are also very sensitive to the presence of water vapor and experience significant performance loss above 25% relative humidity (RH) at room temperature. Relative to NaX and Ni-MOF-74, ZIF-7 and SBMOF-1 show strong CO2 affinity even in the presence of 75% RH and may be more ideally suited for postcombustion flue gas CO2 capture than compounds with unsaturated metal sites. XRD-DSC is particularly powerful for evaluating the consequences of framework flexibility, with XRD providing the signature indicative of the structural rearrangement and the DSC providing the enthalpies of adsorption for each structure. This kind of detailed energy evaluation is not possible with other noncalorimetric methods.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b10159</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-01, Vol.120 (1), p.360-369</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-49005e6aa2cdc050e91f767e96d8bef8013c68d9c1fcf1beadbf18b2e9ce6e2a3</citedby><cites>FETCH-LOGICAL-a317t-49005e6aa2cdc050e91f767e96d8bef8013c68d9c1fcf1beadbf18b2e9ce6e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b10159$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b10159$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Woerner, William R</creatorcontrib><creatorcontrib>Plonka, Anna M</creatorcontrib><creatorcontrib>Chen, Xianyin</creatorcontrib><creatorcontrib>Banerjee, Debasis</creatorcontrib><creatorcontrib>Thallapally, Praveen K</creatorcontrib><creatorcontrib>Parise, John B</creatorcontrib><title>Simultaneous in Situ X‑ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Combined application of in situ X-ray diffraction (XRD) and differential scanning calorimetry (DSC) is a novel technique for rapidly evaluating the suitability of microporous materials for postcombustion CO2 capture. Further, while many microporous materials show promise for CO2 capture, most are not evaluated in the presence of water vapor, a major component of postcombustion flue gas. As a demonstration of the versatility of XRD-DSC techniques, representatives of the classes of materials typically proposed for CO2 capture, zeolites, and metal–organic frameworks (MOFs) were studied: zeolite NaX, Ni-MOF-74 [Ni2(dobdc); dobdc = 2,5-dihydroxy­terephthalate], ZIF-7 [ZIF: zeolitic imidazole framework, Zn­(phim)2; phim: benzimidazole], and SBMOF-1 [Ca­(sdb); sdb: 4,4′-sulfonyl­dibenzoate]. Although NaX and Ni-MOF-74 show very high affinity toward CO2 under idealized dry conditions, they are also very sensitive to the presence of water vapor and experience significant performance loss above 25% relative humidity (RH) at room temperature. Relative to NaX and Ni-MOF-74, ZIF-7 and SBMOF-1 show strong CO2 affinity even in the presence of 75% RH and may be more ideally suited for postcombustion flue gas CO2 capture than compounds with unsaturated metal sites. XRD-DSC is particularly powerful for evaluating the consequences of framework flexibility, with XRD providing the signature indicative of the structural rearrangement and the DSC providing the enthalpies of adsorption for each structure. This kind of detailed energy evaluation is not possible with other noncalorimetric methods.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UM1OwzAMjhBIjMGdYx6AjqRdf3KcxhhImzhsSNwqN3WkTF1TJSnSTvAKvOKehOxH3JAs27L92Z8_Qu45G3EW80eQbrTppBylFWc8FRdkwEUSR_k4TS__8nF-TW6c2zCWJownA_K10tu-8dCi6R3VLV1p39OP_fePhR190kpZkF6blkJb0yk0xuoteqslXfm-1ugoBKNrY5rg6OwTmh480nkoT2pnbHdEh81LLa3pjD0cWoYRq6Fxt-RKhYB35zgk78-z9fQlWrzNX6eTRQQJz300FoExZgCxrCVLGQqu8ixHkdVFhaoIv8isqIXkSipeIdSV4kUVo5CYYQzJkLDT3sDBOYuq7MIjYHclZ-VBwDIIWB4ELM8CBsjDCXLsmN62geD_4798jHjU</recordid><startdate>20160114</startdate><enddate>20160114</enddate><creator>Woerner, William R</creator><creator>Plonka, Anna M</creator><creator>Chen, Xianyin</creator><creator>Banerjee, Debasis</creator><creator>Thallapally, Praveen K</creator><creator>Parise, John B</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160114</creationdate><title>Simultaneous in Situ X‑ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials</title><author>Woerner, William R ; Plonka, Anna M ; Chen, Xianyin ; Banerjee, Debasis ; Thallapally, Praveen K ; Parise, John B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-49005e6aa2cdc050e91f767e96d8bef8013c68d9c1fcf1beadbf18b2e9ce6e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woerner, William R</creatorcontrib><creatorcontrib>Plonka, Anna M</creatorcontrib><creatorcontrib>Chen, Xianyin</creatorcontrib><creatorcontrib>Banerjee, Debasis</creatorcontrib><creatorcontrib>Thallapally, Praveen K</creatorcontrib><creatorcontrib>Parise, John B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woerner, William R</au><au>Plonka, Anna M</au><au>Chen, Xianyin</au><au>Banerjee, Debasis</au><au>Thallapally, Praveen K</au><au>Parise, John B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous in Situ X‑ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-01-14</date><risdate>2016</risdate><volume>120</volume><issue>1</issue><spage>360</spage><epage>369</epage><pages>360-369</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Combined application of in situ X-ray diffraction (XRD) and differential scanning calorimetry (DSC) is a novel technique for rapidly evaluating the suitability of microporous materials for postcombustion CO2 capture. Further, while many microporous materials show promise for CO2 capture, most are not evaluated in the presence of water vapor, a major component of postcombustion flue gas. As a demonstration of the versatility of XRD-DSC techniques, representatives of the classes of materials typically proposed for CO2 capture, zeolites, and metal–organic frameworks (MOFs) were studied: zeolite NaX, Ni-MOF-74 [Ni2(dobdc); dobdc = 2,5-dihydroxy­terephthalate], ZIF-7 [ZIF: zeolitic imidazole framework, Zn­(phim)2; phim: benzimidazole], and SBMOF-1 [Ca­(sdb); sdb: 4,4′-sulfonyl­dibenzoate]. Although NaX and Ni-MOF-74 show very high affinity toward CO2 under idealized dry conditions, they are also very sensitive to the presence of water vapor and experience significant performance loss above 25% relative humidity (RH) at room temperature. Relative to NaX and Ni-MOF-74, ZIF-7 and SBMOF-1 show strong CO2 affinity even in the presence of 75% RH and may be more ideally suited for postcombustion flue gas CO2 capture than compounds with unsaturated metal sites. XRD-DSC is particularly powerful for evaluating the consequences of framework flexibility, with XRD providing the signature indicative of the structural rearrangement and the DSC providing the enthalpies of adsorption for each structure. This kind of detailed energy evaluation is not possible with other noncalorimetric methods.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b10159</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-01, Vol.120 (1), p.360-369
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_5b10159
source American Chemical Society Journals
title Simultaneous in Situ X‑ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20in%20Situ%20X%E2%80%91ray%20Diffraction%20and%20Calorimetric%20Studies%20as%20a%20Tool%20To%20Evaluate%20Gas%20Adsorption%20in%20Microporous%20Materials&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Woerner,%20William%20R&rft.date=2016-01-14&rft.volume=120&rft.issue=1&rft.spage=360&rft.epage=369&rft.pages=360-369&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b10159&rft_dat=%3Cacs_cross%3Eb368844162%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true