Optical Determination of Silicon Nanowire Diameters for Intracellular Applications
Silicon nanowires (SiNWs) are an important class of materials for biomedical and electronics applications, with the nanowire diameter playing a fundamental role in device functionality. Here we present a method, based on light scattering intensity and ensemble electron microcopy (EM) measurements, t...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-12, Vol.119 (52), p.29105-29115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicon nanowires (SiNWs) are an important class of materials for biomedical and electronics applications, with the nanowire diameter playing a fundamental role in device functionality. Here we present a method, based on light scattering intensity and ensemble electron microcopy (EM) measurements, that allows for a precise optical determination of a specific NW’s diameter within an accuracy of a few nanometers (4.8 nm), an error of only ∼8.0%. This method takes advantage of the strong dependence of optical scattering on SiNW diameter to construct an optical to EM transform, with Lorentz-Mie theory showing that this method can be used for NWs up to ∼150 nm in diameter. Additionally, this technique offers some potential insights into biophysical interactions, allowing the optical calibration of individual intracellular SiNW force probes, enabling a ∼100-fold improvement in experimental uncertainty. Using these probes, we were able to measure drug-induced vasoconstriction in human aortic smooth muscle cells (HASMCs), which exerted ∼171 pN of force after ∼30 min of exposure to the hormone angiotension II. These findings represent a scalable method for characterizing SiNW-based devices that are easily extendable to other materials and could be of use in ensuring quality control for future photovoltaics, optical sensors, and nanomaterial biosensors. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.5b10076 |