Influence of Dissolved Iron in Solution on MgO Hydroxylation and Carbonation

MgO (periclase) is a promising material for direct air capture of CO2 using a mineral looping process, but it is unknown how impurities in the environment will affect the CO2 uptake and hence process economics. Here, we investigated the effects of dissolved iron on the extents of MgO hydroxylation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2025-01, Vol.XXX
Hauptverfasser: Weber, Juliane, Moseley, Brittany, Yuan, Ke, Evans, Barbara R., Starchenko, Vitalii, Tajuelo Rodriguez, Elena, Chung, Dong Youn, Boebinger, Matthew G., McGuire, Michael A., Yumnam, George, Hermann, Raphael P., Anovitz, Lawrence M., Stack, Andrew G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MgO (periclase) is a promising material for direct air capture of CO2 using a mineral looping process, but it is unknown how impurities in the environment will affect the CO2 uptake and hence process economics. Here, we investigated the effects of dissolved iron on the extents of MgO hydroxylation and subsequent carbonation reactions to determine if this has a beneficial or detrimental effect. On single-crystal MgO, dissolved iron prevented hydration of MgO to Mg(OH)2 (brucite) and instead formed a shell of lepidocrocite (γ-FeOOH). This did not passivate the MgO as dissolution below the shell was observed. During hydroxylation of MgO powders in the presence of dissolved iron, formation of brucite containing Fe(II) was observed. In addition, formation of nanoscale iron oxides containing Fe(III) was observed using magnetometry and Mössbauer spectroscopy. Subsequent carbonation experiments showed increased carbonation of MgO hydroxylated in the presence of iron. Our results indicate that the presence of dissolved solute impurities during hydroxylation may be beneficial for carbonation of hydroxylated MgO.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.4c04953