Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture
A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-05, Vol.127 (20), p.9779-9786 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9786 |
---|---|
container_issue | 20 |
container_start_page | 9779 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Kumbhakar, Partha Pramanik, Ashim Mishra, Shashank Shekhar Tromer, Raphael Biswas, Krishanu Dasgupta, Arup Galvao, Douglas S. Tiwary, Chandra Sekhar |
description | A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons. |
doi_str_mv | 10.1021/acs.jpcc.3c00513 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_3c00513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a677514339</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYjePe4PsNhut_txREAlIX5EOG-m3S5bAttNW0I4-N_tCvHmZeadzPtMMi9C95SMKInpI0g32nRSjpgkhFN2gQa0YDHOEs4v_3SSXaMb5zbBwghlA_Q9axtopaqihV43PvqS4L2yul1HK9dXiJYHg6d6p1qnTQvb6HMPTkt7dB62eKqkseADz6b4I3C9fAO_twrPW9dpG-YnbXDXGG9aLaOxlY32SvaWW3RVw9apu3MfotXzbDl5xYv3l_lkvMAQ58RjzoAWNKszkSlSVUnOKiWYSJVQNGW5EIIVCaR5KiRUOY0V50VeUCpqHhexYGyIyOmutMY5q-qys3oH9lhSUvbxlSG-so-vPMcXkIcT8rsxexted__bfwDwRHYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</title><source>American Chemical Society Journals</source><creator>Kumbhakar, Partha ; Pramanik, Ashim ; Mishra, Shashank Shekhar ; Tromer, Raphael ; Biswas, Krishanu ; Dasgupta, Arup ; Galvao, Douglas S. ; Tiwary, Chandra Sekhar</creator><creatorcontrib>Kumbhakar, Partha ; Pramanik, Ashim ; Mishra, Shashank Shekhar ; Tromer, Raphael ; Biswas, Krishanu ; Dasgupta, Arup ; Galvao, Douglas S. ; Tiwary, Chandra Sekhar</creatorcontrib><description>A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c00513</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-05, Vol.127 (20), p.9779-9786</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</citedby><cites>FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</cites><orcidid>0000-0003-0145-8358 ; 0000-0001-5382-9195 ; 0000-0001-9760-9768 ; 0000-0003-1001-9349 ; 0000-0002-6749-5971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c00513$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c00513$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kumbhakar, Partha</creatorcontrib><creatorcontrib>Pramanik, Ashim</creatorcontrib><creatorcontrib>Mishra, Shashank Shekhar</creatorcontrib><creatorcontrib>Tromer, Raphael</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><creatorcontrib>Dasgupta, Arup</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><title>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYjePe4PsNhut_txREAlIX5EOG-m3S5bAttNW0I4-N_tCvHmZeadzPtMMi9C95SMKInpI0g32nRSjpgkhFN2gQa0YDHOEs4v_3SSXaMb5zbBwghlA_Q9axtopaqihV43PvqS4L2yul1HK9dXiJYHg6d6p1qnTQvb6HMPTkt7dB62eKqkseADz6b4I3C9fAO_twrPW9dpG-YnbXDXGG9aLaOxlY32SvaWW3RVw9apu3MfotXzbDl5xYv3l_lkvMAQ58RjzoAWNKszkSlSVUnOKiWYSJVQNGW5EIIVCaR5KiRUOY0V50VeUCpqHhexYGyIyOmutMY5q-qys3oH9lhSUvbxlSG-so-vPMcXkIcT8rsxexted__bfwDwRHYg</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Kumbhakar, Partha</creator><creator>Pramanik, Ashim</creator><creator>Mishra, Shashank Shekhar</creator><creator>Tromer, Raphael</creator><creator>Biswas, Krishanu</creator><creator>Dasgupta, Arup</creator><creator>Galvao, Douglas S.</creator><creator>Tiwary, Chandra Sekhar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0145-8358</orcidid><orcidid>https://orcid.org/0000-0001-5382-9195</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0003-1001-9349</orcidid><orcidid>https://orcid.org/0000-0002-6749-5971</orcidid></search><sort><creationdate>20230525</creationdate><title>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</title><author>Kumbhakar, Partha ; Pramanik, Ashim ; Mishra, Shashank Shekhar ; Tromer, Raphael ; Biswas, Krishanu ; Dasgupta, Arup ; Galvao, Douglas S. ; Tiwary, Chandra Sekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumbhakar, Partha</creatorcontrib><creatorcontrib>Pramanik, Ashim</creatorcontrib><creatorcontrib>Mishra, Shashank Shekhar</creatorcontrib><creatorcontrib>Tromer, Raphael</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><creatorcontrib>Dasgupta, Arup</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumbhakar, Partha</au><au>Pramanik, Ashim</au><au>Mishra, Shashank Shekhar</au><au>Tromer, Raphael</au><au>Biswas, Krishanu</au><au>Dasgupta, Arup</au><au>Galvao, Douglas S.</au><au>Tiwary, Chandra Sekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-05-25</date><risdate>2023</risdate><volume>127</volume><issue>20</issue><spage>9779</spage><epage>9786</epage><pages>9779-9786</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c00513</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0145-8358</orcidid><orcidid>https://orcid.org/0000-0001-5382-9195</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0003-1001-9349</orcidid><orcidid>https://orcid.org/0000-0002-6749-5971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-05, Vol.127 (20), p.9779-9786 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_3c00513 |
source | American Chemical Society Journals |
subjects | C: Physical Properties of Materials and Interfaces |
title | Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Light%20Scattering%20Using%20a%20Two-Dimensional%20Quasicrystal-Decorated%203D-Printed%20Nature-Inspired%20Bio-photonic%20Architecture&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kumbhakar,%20Partha&rft.date=2023-05-25&rft.volume=127&rft.issue=20&rft.spage=9779&rft.epage=9786&rft.pages=9779-9786&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c00513&rft_dat=%3Cacs_cross%3Ea677514339%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |