Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture

A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-05, Vol.127 (20), p.9779-9786
Hauptverfasser: Kumbhakar, Partha, Pramanik, Ashim, Mishra, Shashank Shekhar, Tromer, Raphael, Biswas, Krishanu, Dasgupta, Arup, Galvao, Douglas S., Tiwary, Chandra Sekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9786
container_issue 20
container_start_page 9779
container_title Journal of physical chemistry. C
container_volume 127
creator Kumbhakar, Partha
Pramanik, Ashim
Mishra, Shashank Shekhar
Tromer, Raphael
Biswas, Krishanu
Dasgupta, Arup
Galvao, Douglas S.
Tiwary, Chandra Sekhar
description A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.
doi_str_mv 10.1021/acs.jpcc.3c00513
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_3c00513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a677514339</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYjePe4PsNhut_txREAlIX5EOG-m3S5bAttNW0I4-N_tCvHmZeadzPtMMi9C95SMKInpI0g32nRSjpgkhFN2gQa0YDHOEs4v_3SSXaMb5zbBwghlA_Q9axtopaqihV43PvqS4L2yul1HK9dXiJYHg6d6p1qnTQvb6HMPTkt7dB62eKqkseADz6b4I3C9fAO_twrPW9dpG-YnbXDXGG9aLaOxlY32SvaWW3RVw9apu3MfotXzbDl5xYv3l_lkvMAQ58RjzoAWNKszkSlSVUnOKiWYSJVQNGW5EIIVCaR5KiRUOY0V50VeUCpqHhexYGyIyOmutMY5q-qys3oH9lhSUvbxlSG-so-vPMcXkIcT8rsxexted__bfwDwRHYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</title><source>American Chemical Society Journals</source><creator>Kumbhakar, Partha ; Pramanik, Ashim ; Mishra, Shashank Shekhar ; Tromer, Raphael ; Biswas, Krishanu ; Dasgupta, Arup ; Galvao, Douglas S. ; Tiwary, Chandra Sekhar</creator><creatorcontrib>Kumbhakar, Partha ; Pramanik, Ashim ; Mishra, Shashank Shekhar ; Tromer, Raphael ; Biswas, Krishanu ; Dasgupta, Arup ; Galvao, Douglas S. ; Tiwary, Chandra Sekhar</creatorcontrib><description>A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c00513</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-05, Vol.127 (20), p.9779-9786</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</citedby><cites>FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</cites><orcidid>0000-0003-0145-8358 ; 0000-0001-5382-9195 ; 0000-0001-9760-9768 ; 0000-0003-1001-9349 ; 0000-0002-6749-5971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c00513$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c00513$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kumbhakar, Partha</creatorcontrib><creatorcontrib>Pramanik, Ashim</creatorcontrib><creatorcontrib>Mishra, Shashank Shekhar</creatorcontrib><creatorcontrib>Tromer, Raphael</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><creatorcontrib>Dasgupta, Arup</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><title>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYjePe4PsNhut_txREAlIX5EOG-m3S5bAttNW0I4-N_tCvHmZeadzPtMMi9C95SMKInpI0g32nRSjpgkhFN2gQa0YDHOEs4v_3SSXaMb5zbBwghlA_Q9axtopaqihV43PvqS4L2yul1HK9dXiJYHg6d6p1qnTQvb6HMPTkt7dB62eKqkseADz6b4I3C9fAO_twrPW9dpG-YnbXDXGG9aLaOxlY32SvaWW3RVw9apu3MfotXzbDl5xYv3l_lkvMAQ58RjzoAWNKszkSlSVUnOKiWYSJVQNGW5EIIVCaR5KiRUOY0V50VeUCpqHhexYGyIyOmutMY5q-qys3oH9lhSUvbxlSG-so-vPMcXkIcT8rsxexted__bfwDwRHYg</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Kumbhakar, Partha</creator><creator>Pramanik, Ashim</creator><creator>Mishra, Shashank Shekhar</creator><creator>Tromer, Raphael</creator><creator>Biswas, Krishanu</creator><creator>Dasgupta, Arup</creator><creator>Galvao, Douglas S.</creator><creator>Tiwary, Chandra Sekhar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0145-8358</orcidid><orcidid>https://orcid.org/0000-0001-5382-9195</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0003-1001-9349</orcidid><orcidid>https://orcid.org/0000-0002-6749-5971</orcidid></search><sort><creationdate>20230525</creationdate><title>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</title><author>Kumbhakar, Partha ; Pramanik, Ashim ; Mishra, Shashank Shekhar ; Tromer, Raphael ; Biswas, Krishanu ; Dasgupta, Arup ; Galvao, Douglas S. ; Tiwary, Chandra Sekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-53a1917f7b7e0dd483deb3b6ebe1638bbb394a686bcad812e5598911bf5292b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumbhakar, Partha</creatorcontrib><creatorcontrib>Pramanik, Ashim</creatorcontrib><creatorcontrib>Mishra, Shashank Shekhar</creatorcontrib><creatorcontrib>Tromer, Raphael</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><creatorcontrib>Dasgupta, Arup</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumbhakar, Partha</au><au>Pramanik, Ashim</au><au>Mishra, Shashank Shekhar</au><au>Tromer, Raphael</au><au>Biswas, Krishanu</au><au>Dasgupta, Arup</au><au>Galvao, Douglas S.</au><au>Tiwary, Chandra Sekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-05-25</date><risdate>2023</risdate><volume>127</volume><issue>20</issue><spage>9779</spage><epage>9786</epage><pages>9779-9786</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c00513</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0145-8358</orcidid><orcidid>https://orcid.org/0000-0001-5382-9195</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0003-1001-9349</orcidid><orcidid>https://orcid.org/0000-0002-6749-5971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-05, Vol.127 (20), p.9779-9786
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_3c00513
source American Chemical Society Journals
subjects C: Physical Properties of Materials and Interfaces
title Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Light%20Scattering%20Using%20a%20Two-Dimensional%20Quasicrystal-Decorated%203D-Printed%20Nature-Inspired%20Bio-photonic%20Architecture&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kumbhakar,%20Partha&rft.date=2023-05-25&rft.volume=127&rft.issue=20&rft.spage=9779&rft.epage=9786&rft.pages=9779-9786&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c00513&rft_dat=%3Cacs_cross%3Ea677514339%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true