Enhanced Light Scattering Using a Two-Dimensional Quasicrystal-Decorated 3D-Printed Nature-Inspired Bio-photonic Architecture

A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-05, Vol.127 (20), p.9779-9786
Hauptverfasser: Kumbhakar, Partha, Pramanik, Ashim, Mishra, Shashank Shekhar, Tromer, Raphael, Biswas, Krishanu, Dasgupta, Arup, Galvao, Douglas S., Tiwary, Chandra Sekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number of strategies have been exploited so far to trap photons inside living cells to obtain high-contrast imaging. Also, launching light inside biological materials is technically challenging. Using photon confinement in a three-dimensional (3D)-printed biomimetic architecture in the presence of a localized surface plasmon resonance (LSPR) promoter can overcome some of these issues. This work compares optical confinement in natural and 3D-printed photonic architectures, namely, fish scale, in the presence of atomically thin Al70Co10Fe5Ni10Cu5 quasicrystals (QCs). Due to their wideband LSPR response, the QCs work as photon scattering hotspots. The architecture acts as an additive source of excitation for the two-dimensional (2D) QCs via total internal reflection (TIR). The computational analysis describes the surface plasmon-based scattering property of 2D QCs. The 3D-printed fish scale’s image contrast with the 2D Al70Co10Fe5Ni10Cu5 QC has been compared with other 2D materials (graphene, h-BN, and MoS2) and outperforms them. The present study conceptually presents a new approach for obtaining high-quality imaging of biological imaging, even using high-energy photons.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.3c00513