Naturally Occurring Proteins Direct Chiral Nanorod Aggregation
Serum albumin can template gold nanorods into chiral assemblies, but the aggregation mechanism is not entirely understood. We used circular dichroism spectroscopy and scanning electron microscopy to investigate the role of protein identity/shape, protein/nanorod ratio, and surfactants on chiral prot...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2022-02, Vol.126 (5), p.2656-2668 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serum albumin can template gold nanorods into chiral assemblies, but the aggregation mechanism is not entirely understood. We used circular dichroism spectroscopy and scanning electron microscopy to investigate the role of protein identity/shape, protein/nanorod ratio, and surfactants on chiral protein–nanorod aggregation. Three globular proteinsserum albumin, immunoglobulin, and transferrinproduced similarly sized chiral protein–nanorod aggregates. In solution these aggregates exhibited circular dichroism at the plasmon resonance that switched direction at specific protein/nanorod concentration ratios. Our explanation is that the extent of protein crowding influences protein conformation and therefore protein–protein interactions, which in turn direct nanorod aggregation into preferentially left- or right-handed structures. The fibrous proteins fibrinogen and fibrillar serum albumin also produced chiral nanorod aggregates but did not exhibit a ratio-dependent switch in the circular dichroism direction. In addition, cetyltrimethylammonium bromide micelles prevented all aggregation, providing compelling evidence that protein–protein interactions are crucial for chiral protein–nanorod aggregate formation. The protein-dependent variations in circular dichroism and aggregation reported here present opportunities for future chiral nanostructure engineering and biosensing applications. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.1c09644 |