Elucidating the Mechanism of Nitrogen Doping in Graphene Oxide: Structural Evolution of Dopants and the Role of Oxygen

Doping graphene oxide is a cost-effective method of producing materials that combines novel properties with graphene-like stability, conductivity, and surface area. Nitrogen-doped graphene (oxide) has emerged as an important material for various applications; however, the doping mechanism of nitroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-10, Vol.125 (41), p.22547-22553
Hauptverfasser: Bawari, Sumit, Nair, Maya Narayanan, Mondal, Jagannath, Narayanan, Tharangattu N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Doping graphene oxide is a cost-effective method of producing materials that combines novel properties with graphene-like stability, conductivity, and surface area. Nitrogen-doped graphene (oxide) has emerged as an important material for various applications; however, the doping mechanism of nitrogen into a graphene (oxide) lattice is ill-understood. In this work, using a combined reactive molecular dynamics (MD) and experimental approach, we aim to elucidate this mechanism. MD simulations are able to provide an unbiased atomistic mechanism of nitrogen association that is oxide environment- and dopant-dependent. These results are correlated to experiments via spectroscopic characterization on corresponding experimentally annealed samples. Overall, a good correlation between experimental and computational analyses strengthens the validity of mechanisms derived from simulations.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.1c06270