Concentration Dependent Self-Assembly of TrK-NGF Receptor Derived Tripeptide: New Insights from Experiment and Computer Simulations
Early research has shown that many neurodegenerative diseases are associated with the absence of a short and natural tripeptide sequence, Lys-Phe-Gly (KFG). Herein we report results of both experiments and extensive MD simulations of this tripeptide to understand the self-assembly and morphology as...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2017-02, Vol.121 (4), p.815-824 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Early research has shown that many neurodegenerative diseases are associated with the absence of a short and natural tripeptide sequence, Lys-Phe-Gly (KFG). Herein we report results of both experiments and extensive MD simulations of this tripeptide to understand the self-assembly and morphology as a function of its concentration. Morphologies of the aggregates formed by the tripeptide at low concentration (vesicles), and at high concentration (nanotubes) are studied by several independent 3 μs long Martini coarse-graining MD simulation runs. Further, prediction from MD at still higher concentrations about the formation of rectangular blocks, reported for the first time, has been verified through laboratory experiments. Thus, the computational studies performed are in agreement with the experimental findings observed in our laboratory and a complete control over the formation of various nanostructures is achieved simply by changing the concentration of a short and naturally conserved tripeptide. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.6b10511 |