In Quest of the Missing C 2 H 6 O 2 Isomers in the Interstellar Medium: A Theoretical Search
Ethylene glycol (C H O ), the only diol detected in the interstellar medium (ISM), is a key component in the synthesis of prebiotic sugars. Its structural isomer, methoxymethanol, has also been found in the ISM. Our results show that neither ethylene glycol (ethane-1,2-diol) nor methoxymethanol is t...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-08, Vol.128 (32), p.6757-6762 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ethylene glycol (C
H
O
), the only diol detected in the interstellar medium (ISM), is a key component in the synthesis of prebiotic sugars. Its structural isomer, methoxymethanol, has also been found in the ISM. Our results show that neither ethylene glycol (ethane-1,2-diol) nor methoxymethanol is the most stable isomer. Using high-level computational methods, we identified five isomers: two diols, one hydroxy ether, and two peroxides. The geminal diol 1,1-ethanediol (ethane-1,1-diol) is the most stable isomer, although it has not been detected in the ISM, whereas the two peroxides are less stable than the geminal diol by 60 kcal/mol. This study also provides the rotational constants and dipole moment for each conformer of every C
H
O
isomer. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.4c04102 |