S N 2 Reactions with an Ambident Nucleophile: A Benchmark Ab Initio Study of the CN - + CH 3 Y [Y = F, Cl, Br, and I] Systems

We characterize the Walden-inversion, front-side attack, and double-inversion S 2 pathways leading to Y + CH CN/CH NC and the product channels of proton abstraction (HCN/HNC + CH Y ), hydride-ion substitution (H + YH CCN/YH CNC), halogen abstraction (YCN /YNC + CH and YCN/YNC + CH ), and YHCN /YHNC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-02, Vol.126 (6), p.889-900
Hauptverfasser: Kerekes, Zsolt, Tasi, Domonkos A, Czakó, Gábor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the Walden-inversion, front-side attack, and double-inversion S 2 pathways leading to Y + CH CN/CH NC and the product channels of proton abstraction (HCN/HNC + CH Y ), hydride-ion substitution (H + YH CCN/YH CNC), halogen abstraction (YCN /YNC + CH and YCN/YNC + CH ), and YHCN /YHNC complex formation (YHCN /YHNC + CH ) of the CN + CH Y [Y = F, Cl, Br, and I] reactions. Benchmark structures and frequencies are computed at the CCSD(T)-F12b/aug-cc-pVTZ level of theory, and a composite approach is employed to obtain relative energies with sub-chemical accuracy considering (a) basis-set effects up to aug-cc-pVQZ, (b) post-CCSD(T) correlation up to CCSDT(Q), (c) core correlation, (d) relativistic effects, and (e) zero-point energy corrections. C-C bond formation is both thermodynamically and kinetically more preferred than N-C bond formation, though the kinetic preference is less significant. Walden inversion proceeds via low or submerged barriers (12.1/17.9(F), 0.0/4.3(Cl), -3.9/0.1(Br), and -5.8/-1.8(I) kcal/mol for C-C/N-C bond formation), front-side attack and double inversion have high barriers (30-64 kcal/mol), the latter is the lower-energy retention pathway, and the non-S 2 electronic ground-state product channels are endothermic (Δ = 31-92 kcal/mol).
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.1c10448