S N 2 Reactions with an Ambident Nucleophile: A Benchmark Ab Initio Study of the CN - + CH 3 Y [Y = F, Cl, Br, and I] Systems
We characterize the Walden-inversion, front-side attack, and double-inversion S 2 pathways leading to Y + CH CN/CH NC and the product channels of proton abstraction (HCN/HNC + CH Y ), hydride-ion substitution (H + YH CCN/YH CNC), halogen abstraction (YCN /YNC + CH and YCN/YNC + CH ), and YHCN /YHNC...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-02, Vol.126 (6), p.889-900 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the Walden-inversion, front-side attack, and double-inversion S
2 pathways leading to Y
+ CH
CN/CH
NC and the product channels of proton abstraction (HCN/HNC + CH
Y
), hydride-ion substitution (H
+ YH
CCN/YH
CNC), halogen abstraction (YCN
/YNC
+ CH
and YCN/YNC + CH
), and YHCN
/YHNC
complex formation (YHCN
/YHNC
+
CH
) of the CN
+ CH
Y [Y = F, Cl, Br, and I] reactions. Benchmark structures and frequencies are computed at the CCSD(T)-F12b/aug-cc-pVTZ level of theory, and a composite approach is employed to obtain relative energies with sub-chemical accuracy considering (a) basis-set effects up to aug-cc-pVQZ, (b) post-CCSD(T) correlation up to CCSDT(Q), (c) core correlation, (d) relativistic effects, and (e) zero-point energy corrections. C-C bond formation is both thermodynamically and kinetically more preferred than N-C bond formation, though the kinetic preference is less significant. Walden inversion proceeds via low or submerged barriers (12.1/17.9(F), 0.0/4.3(Cl), -3.9/0.1(Br), and -5.8/-1.8(I) kcal/mol for C-C/N-C bond formation), front-side attack and double inversion have high barriers (30-64 kcal/mol), the latter is the lower-energy retention pathway, and the non-S
2 electronic ground-state product channels are endothermic (Δ
= 31-92 kcal/mol). |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.1c10448 |