Machine Learning Improves Trace Explosive Selectivity: Application to Nitrate-Based Explosives

Ion mobility spectrometry (IMS) is the method of choice to detect trace amounts of explosives in most airports and border crossing settings. For most explosives, the IMS detection limits are suitably low enough to meet security requirements. However, for some explosive families, the selectivity is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (46), p.9656-9664
Hauptverfasser: Fisher, Danny, Lukow, Stefan R, Berezutskiy, Gennadiy, Gil, Itai, Levy, Tal, Zeiri, Yehuda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion mobility spectrometry (IMS) is the method of choice to detect trace amounts of explosives in most airports and border crossing settings. For most explosives, the IMS detection limits are suitably low enough to meet security requirements. However, for some explosive families, the selectivity is not sufficient. One such family is nitrate-based explosives, where discrimination between various nitrate threats and ambient nitrates is challenging. Using a small database, machine learning methods were utilized to examine the extent of improvement in IMS selectivity for detection of nitrate-based explosives. Five classes were considered in this preliminary study: ammonium nitrate (AN), an ∼95:5 mixture of AN and fuel oil (ANFO), urea nitrate (UN), nitrate due to environmental pollution, and samples that did not contain any explosive (blanks). The preliminary results clearly show that the incorporation of machine learning methods can lead to a significant improvement in IMS selectivity.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.0c05909