Divergent Synthesis of Three Classes of Antifungal Amphiphilic Kanamycin Derivatives

A concise and novel method for site-selective alkylation of 1,3,6′,3″-tetraazidokanamycin has been developed that leads to the divergent synthesis of three classes of kanamycin A derivatives. These new amphiphilic kanamycin derivatives bearing alkyl chains length of 4, 6, 7, 8, 9, 10, 12, 14, and 16...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2016-11, Vol.81 (22), p.10651-10663
Hauptverfasser: Zhang, Qian, Alfindee, Madher N, Shrestha, Jaya P, Nziko, Vincent de Paul Nzuwah, Kawasaki, Yukie, Peng, Xinrui, Takemoto, Jon Y, Chang, Cheng-Wei Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A concise and novel method for site-selective alkylation of 1,3,6′,3″-tetraazidokanamycin has been developed that leads to the divergent synthesis of three classes of kanamycin A derivatives. These new amphiphilic kanamycin derivatives bearing alkyl chains length of 4, 6, 7, 8, 9, 10, 12, 14, and 16 have been tested for their antibacterial and antifungal activities. The antibacterial effect of the synthesized kanamycin derivatives declines or disappears as compared to the original kanamycin A. Several compounds, especially those with octyl chain at O-4″ and/or O-6″ positions on the ring III of kanamycin A, show very strong activity as antifungal agents. In addition, these compounds display no toxicity toward mammalian cells. Finally, computational calculation has revealed possible factors that are responsible for the observed regioselectivity. The simplicity in chemical synthesis and the fungal specific property make the lead compounds ideal candidates for the development of novel antifungal agents.
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.6b01189