Short Total Synthesis of (±)-Gelliusine E and 2,3′-Bis(indolyl)ethylamines via PTSA-Catalyzed Transindolylation
A first and short total synthesis of the marine sponge 2,3′-bis(indolyl)ethylamine (2,3′-BIEA) alkaloid (±)-gelliusine E was performed in both a three-step divergent approach and a one-pot three-component approach with an overall yield of up to 58%. A key feature of the novel strategy is PTSA-cata...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2021-10, Vol.86 (19), p.13360-13370 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A first and short total synthesis of the marine sponge 2,3′-bis(indolyl)ethylamine (2,3′-BIEA) alkaloid (±)-gelliusine E was performed in both a three-step divergent approach and a one-pot three-component approach with an overall yield of up to 58%. A key feature of the novel strategy is PTSA-catalyzed transindolylation of the readily synthesized 3,3′-BIEAs with tryptamine derivatives. The structure of the isolated natural product is revised as protonated (±)-gelliusine E (4′). By design, this modular route allows the rapid synthesis of other members of the 2,3′-BIEA family, for example, (±)-6,6′-bis-(debromo)-gelliusine F and analogues with step economy, operational simplicity, and reduced waste. Furthermore, their cytotoxicity in breast cancer cells was investigated. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.1c01461 |