CNS Physicochemical Property Space Shaped by a Diverse Set of Molecules with Experimentally Determined Exposure in the Mouse Brain: Miniperspective

Understanding the “limits and boundaries” of the central nervous system (CNS) property space is a critical aspect of modern CNS drug design. Medicinal chemists are often guided by the physicochemical properties of marketed CNS drugs, which are heavily biased toward “traditional” aminergic targets an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2017-07, Vol.60 (14), p.5943-5954
1. Verfasser: Rankovic, Zoran
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the “limits and boundaries” of the central nervous system (CNS) property space is a critical aspect of modern CNS drug design. Medicinal chemists are often guided by the physicochemical properties of marketed CNS drugs, which are heavily biased toward “traditional” aminergic targets and commonly described as small lipophilic amines. This miniperspective describes the statistical analysis of the calculated physicochemical properties for a diverse set of ligands for mostly “nontraditional” CNS targets and classified as either “brain penetrant” or “peripherally restricted” on the basis of the experimental mouse brain exposure. The results suggested that (a) the physicochemical property space conducive to brain exposure is larger than the one defined by the marketed CNS drugs and (b) the most critical brain exposure determinants are descriptors of the molecular size and hydrogen bond capacity. These findings led to a modified version of the CNS MPO scoring algorithm, termed CNS MPO.v2.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.6b01469