Novel Biphenyl Pyridines as Potent Small-Molecule Inhibitors Targeting the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction

With the successful clinical application of anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) monoclonal antibodies (mAb), targeting the PD-1/PD-L1 interaction has become a promising method for the discovery of cancer therapy. Due to the inherent limitations of antibodies, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2021-06, Vol.64 (11), p.7390-7403
Hauptverfasser: Wang, Tianyu, Cai, Shi, Wang, Mingming, Zhang, Wanheng, Zhang, Kuojun, Chen, Dong, Li, Zheng, Jiang, Sheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the successful clinical application of anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) monoclonal antibodies (mAb), targeting the PD-1/PD-L1 interaction has become a promising method for the discovery of cancer therapy. Due to the inherent limitations of antibodies, it is necessary to search for small-molecule inhibitors against the PD-1/PD-L1 axis. We report the design, synthesis, and evaluation in vitro and in vivo of a series of novel biphenyl pyridines as the inhibitors of PD-1/PD-L1. 2-(((2-Methoxy-6-(2-methyl-[1,1′-biphenyl]-3-yl)­pyridin-3-yl)­methyl)­amino)­ethan-1-ol (24) was found to inhibit the PD-1/PD-L1 interaction with an IC50 value of 3.8 ± 0.3 nM and enhance the killing activity of tumor cells by immune cells. Compound 24 displays great pharmacokinetics (oral bioavailability of 22%) and significant in vivo antitumor activity in a CT26 mouse model. Flow cytometry and immunohistochemistry data indicated that compound 24 activates the immune activity in tumors. These results suggest that compound 24 is a promising small-molecule inhibitor against the PD-1/PD-L1 axis and merits further development.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.1c00010