Molecular Models for the Hydrogen Age: Hydrogen, Nitrogen, Oxygen, Argon, and Water
Thermodynamic properties including the phase behavior of all mixtures containing hydrogen, the main air components nitrogen, oxygen, and argon, as well as water are of particular interest for the upcoming postcarbon age. Molecular modeling and simulation, the PC-SAFT equation of state, and sophistic...
Gespeichert in:
Veröffentlicht in: | Journal of chemical and engineering data 2018-02, Vol.63 (2), p.305-320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermodynamic properties including the phase behavior of all mixtures containing hydrogen, the main air components nitrogen, oxygen, and argon, as well as water are of particular interest for the upcoming postcarbon age. Molecular modeling and simulation, the PC-SAFT equation of state, and sophisticated empirical equations of state are employed to study the mixture behavior of these five substances. For this purpose, a new force field for hydrogen is developed. All relevant subsystems, that is, binary, ternary, and quaternary mixtures, are considered. The quality of the results is assessed by comparing to available experimental literature data, showing an excellent agreement in many cases. Molecular simulation, which is the most versatile approach in general, also provides the best overall agreement. Consequently, this contribution aims at an improved availability of thermodynamic data that are required for the hydrogen age. |
---|---|
ISSN: | 0021-9568 1520-5134 |
DOI: | 10.1021/acs.jced.7b00706 |