Chemical Modifications of Vicilins Interfere with Chitin-Binding Affinity and Toxicity to Callosobruchus maculatus (Coleoptera: Chrysomelidae) Insect: A Combined In Vitro and In Silico Analysis

Vicilins are related to cowpea seed resistance toward Callosobruchus maculatus due to their ability to bind to chitinous structures lining larval midgut. However, this binding mechanism is not fully understood. Here, we identified chitin binding sites and investigated how in vitro and in silico chem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-05, Vol.68 (20), p.5596-5605
Hauptverfasser: Miranda, Maria Raquel A, Uchôa, Adriana F, Ferreira, Sarah R, Ventury, Kayan E, Costa, Evenilton P, Carmo, Paulo R. Leitão, Machado, Olga L. T, Fernandes, Katia V. S, Amancio Oliveira, Antonia Elenir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vicilins are related to cowpea seed resistance toward Callosobruchus maculatus due to their ability to bind to chitinous structures lining larval midgut. However, this binding mechanism is not fully understood. Here, we identified chitin binding sites and investigated how in vitro and in silico chemical modifications interfere with vicilin chitin binding and insect toxicity. In vitro assays showed that unmodified vicilin strongly binds to chitin matrices, mainly with acetylated chitin. Chemical modifications of specific amino acids (tryptophan, lysine, tyrosine), as well as glutaraldehyde cross-linking, decreased the evaluated parameters. In silico analyses identified at least one chitin binding site in vicilin monomer, the region between Arg208 and Lys216, which bears the sequence REGIRELMK and forms an α helix, exposed in the 3D structure. In silico modifications of Lys223 (acetylated at its terminal nitrogen) and Trp316 (iodinated to 7-iodine-L-tryptophan or oxidized to β-oxy-indolylalanine) decreased vicilin chitin binding affinity. Glucose, sucrose, and N-acetylglucosamine also interfered with vicilin chitin binding affinity.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.9b08034