Molecular Characterization and Variation of the Celiac Disease Epitope Domains among α‑Gliadin Genes in Aegilops tauschii

To explore the distribution and quantity of toxic epitopes in α-gliadins from Aegilops tauschii, a total of 133 complete α-gliadin coding sequences were obtained, including 69 pseudogenes with at least one premature stop codon and 64 genes with complete open reading frames (ORFs). Plenty of deletion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2017-04, Vol.65 (16), p.3422-3429
Hauptverfasser: Li, Yu-Ge, Liang, Hui-Hui, Bai, Sheng-Long, Zhou, Yun, Sun, Guiling, Su, Ya-Rui, Gao, An-Li, Zhang, Da-Le, Li, Suo-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To explore the distribution and quantity of toxic epitopes in α-gliadins from Aegilops tauschii, a total of 133 complete α-gliadin coding sequences were obtained, including 69 pseudogenes with at least one premature stop codon and 64 genes with complete open reading frames (ORFs). Plenty of deletions and single amino acid substitutions were found in the 4 celiac disease (CD) toxic epitope domains through multiple alignments, in which the sequence of DQ2.5-glia-α2 demonstrated the most significant changes. Interestingly, 7 of the 59 α-gliadins were free of any kind of intact CD toxic epitopes, providing potential gene resources for low CD toxicity breeding of common wheat. Analysis of the neighbor-joining tree demonstrates that 2 of the totally 7 α-gliadins cluster within the homologues of Triticum (A genome), and the other 5 group with those of Aegilops Sitopsis (B genome). This result implies that the 7 α-gliadin genes may be originated from the ancestor species of Ae. tauschii, evolved by the homoploid hybrid of Triticum and Aegilops Sitopsis. The remaining 52 α-gliadins form a separate clade from other homologues of A and B genomes, suggesting a recent rapid gene expansion by gene duplication associated with the species adaptation.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.7b00338