Gene Expression Patterns Are Altered in Athymic Mice and Metabolic Syndrome Factors Are Reduced in C57BL/6J Mice Fed High-Fat Diets Supplemented with Soy Isoflavones

Soy isoflavones exert beneficial health effects; however, their potential to ameliorate conditions associated with the metabolic syndrome (MetS) has not been studied in detail. In vitro and in vivo models were used to determine the effect of isoflavones on lipid metabolism, inflammation, and oxidati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2016-10, Vol.64 (40), p.7492-7501
Hauptverfasser: Luo, Ting, Snyder, Sarah M., Zhao, Bingxin, Sullivan, Debra K., Hamilton-Reeves, Jill, Guthrie, Gregory, Ricketts, Marie-Louise, Shiverick, Kathleen T., Shay, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soy isoflavones exert beneficial health effects; however, their potential to ameliorate conditions associated with the metabolic syndrome (MetS) has not been studied in detail. In vitro and in vivo models were used to determine the effect of isoflavones on lipid metabolism, inflammation, and oxidative stress. In nude mice, consumption of Novasoy (NS) increased cholesterol and lipid metabolism gene expression, including Scd-1 (27.7-fold), Cyp4a14 (35.2-fold), and Cyp4a10 (9.5-fold), and reduced anti-inflammatory genes, including Cebpd (16.4-fold). A high-fat (HF) diet containing 0.4% (w/w) NS for 10 weeks significantly reduced percent weight gain (74.6 ± 2.5 vs 68.6 ± 3.5%) and hepatic lipid accumulation (20 ± 1.2 vs 27 ± 1.5%), compared to HF alone (p < 0.05) in C57BL/6J mice. NS also increased lipid oxidation and antioxidant gene expression while decreasing inflammatory cytokines. In vitro analysis in HepG2 cells revealed that genistein dose-dependently decreases oleic acid-induced lipid accumulation. Soy isoflavones may ameliorate symptoms associated with MetS via anti-inflammatory, antioxidant, and hypolipidemic modulation.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.6b03401