Acrolein-Trapping Mechanism of Theophylline in Green Tea, Coffee, and Cocoa: Speedy and Successful

Increasing evidence has identified the unsaturated aldehyde acrolein (ACR) as the potential factor that causes deoxyribonucleic acid cross-linking and the development of chronic diseases. The objective of this study was to investigate the mechanism by which theophylline (TP) scavenges ACR for the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-09, Vol.68 (36), p.9718-9724
Hauptverfasser: Jiang, Xiaoyun, Zhang, Dingmin, Lu, Yongling, Lv, Lishuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing evidence has identified the unsaturated aldehyde acrolein (ACR) as the potential factor that causes deoxyribonucleic acid cross-linking and the development of chronic diseases. The objective of this study was to investigate the mechanism by which theophylline (TP) scavenges ACR for the first time. TP efficiently scavenged ACR through forming adducts, which was demonstrated in a system in which TP was incubated with ACR at different ratios for different times for liquid chromatography with tandem mass spectrometry. Then, the mono- and di-ACR-TP adducts were purified, and their structures were elucidated by high-resolution mass spectrometry and nuclear magnetic resonance analysis. We found that the ACR residue on mono-ACR-TP further trapped one more ACR and formed di-ACR-TP adducts. Furthermore, mono- and di-ACR-TP had similar time-dependent ACR-scavenging activity to TP. Finally, we demonstrated that green tea, coffee, and cocoa inhibited ACR by trapping ACR to form mono- and di-ACR-TP adducts during the incubation of green tea, coffee, and cocoa with ACR.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c03895