Cubic Nanostructures of Nickel–Cobalt Carbonate Hydroxide Hydrate as a High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline and Near-Neutral Media

Catalyst development for the efficient direction of electrocatalytic water splitting with much less overpotential is crucial for meeting large-scale hydrogen generation. Being highly abundant and cost-effective, 3d transition-metal-based catalysts show promising activities in alkaline conditions. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2020-11, Vol.59 (22), p.16690-16702
Hauptverfasser: Karthick, Kannimuthu, Subhashini, Sugumar, Kumar, Rishabh, Sethuram Markandaraj, Sridhar, Teepikha, Muthukumar Muthu, Kundu, Subrata
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catalyst development for the efficient direction of electrocatalytic water splitting with much less overpotential is crucial for meeting large-scale hydrogen generation. Being highly abundant and cost-effective, 3d transition-metal-based catalysts show promising activities in alkaline conditions. In this work, bimetallic nickel–cobalt carbonate hydroxide hydrate (NiCo­CHH) was prepared by a co-precipitation method with varying molar ratios of Ni/Co of 0.5:1, 1:1, and 1.5:1, which were analyzed for oxygen evolution reaction (OER) study in both alkaline (1 M KOH) and near-neutral (1 M NaHCO3) media. For OER in 1 M KOH, NiCoCHH 1:1 required overpotential of just 238 mV at 10 mA cm–2 current density compared to other ratios of 0.5:1 and 1.5:1, which required 290 and 308 mV, respectively. Similarly, in 1 M NaHCO3, NiCoCHH 1:1 required an overpotential of 623 mV to reach 10 mA cm–2. A post-OER study confirmed the formation of NiOOH during OER. The observed faradaic efficiency was nearly 95.21% for the NiCoCHH 1:1 catalyst. A two-electrode setup with NiCoCHH 1:1∥Pt required just 312 mV as an overpotential at 10 mA cm–2. These kinds of comparative studies can be used in other 3d transition-metal-based catalysts for OER in the future.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.0c02680